This is a complete set of resources covering the whole AQA course, organised for two types of revision.

- (1) "Cue Cards". Each unit is broken down into key knowledge and concepts, formulas, definitions and so on, which are grouped and tabulated. The table can be printed and cut into cards, and the student can write the answers on the back of each card. The student can then revise by going through the cards, and giving the answers to each of the bullet points, and checking with the answer on the back. This can be done verbally so no writing needed.
- (2) "Just a Minute". The student can practise talking for "Just a Minute" on each of the key concepts in the table, without hesitation, repetition or deviation. It can be just verbal, with graphs and diagrams sketched in the air, or with a pencil and rough paper.

Both revision activities will be much more effective and enjoyable if done with a friend, who does not need to know any physics at all.

There are phrases, usually in "quotes", that relate to memory aids I used in the Physics course. For example, "Roll over Beethoven", is not only the old Chuck Berry and Beatles song, it is also a memory aid for the electrical resistivity formula. And the John Travolta Rule is from his posing in his white suit, with one arm up and one arm down, in the film "Saturday Night Fever". This becomes the kinaesthetic memory aid for the way a semiconductor's resistance goes down as the temperature goes up - yes, teacher and students would compete in the classroom for the most realistic pose. "Bil" and "Bev" refer to the formulas for the forces on wires and free electrons in magnetic fields.

I hope you find this guide useful.

Andrew McNeil May 2024 Unit 1 - 1 of 2. "Cue Cards" - can you describe/explain each of these points? Check with your answers written on the back.

10.5 DC Circuits Unit 1	10.4 Electricity - (a) Unit 1
 power formula - 3 versions resistors - series (1 formula), parallel (2 formulas) potential divider - diagram of a light sensor (1 formula) Kirchhoff's laws - Junction and Loop 	 drift velocity - formula (1) real cells - diagram 1 formula + explanation cells in series graph terminal pd vs current semiconductorsldrthermistordiode symbolsV/Ibehaviour
10.6 Information Unit 1	10. 4 Electricity - (b) Unit 1
 analogue and digital decimal and binary data sampling remote sensing power transmission through cables 	 charge carriers - 3 states of matter current - def. + 1 formula voltage - def + 1 formula superconductivity resistivity - definition + formula (1)

Unit 1 - 2 of 2. "Cue Cards" - can you describe/explain each of these points? Check with your answers written on the back.

10.1 Scalars and Vectors Unit 1	10.2 Kinematics (a) Unit 1	
 scalars and vectors adding vectors components of vectors moments torque 	 the 3 graphs for motion with constant acceleration the 4 equations of motion projectiles in a gravity field non-uniform accelerated motion - v/t and s/t graphsareas and slopes 	
10.3 Energy Unit 1	10.2 Kinematics (b) Unit 1	
 energy conservation energy resources and electricity generation PE and KE 	 Friction and motion terminal velocity v/t and a/t graphs motion with fixed power output Newton's Law II oscillating systemsperiod, damping 	

Physics AS / A2 Revision - "Cue Cards" and "Just a Minute" Unit 1 - Electricity

Binary	Digital and Analogue	"Roll over Beethoven"	"Lost Volts"
Potential Dividers	A Light Sensor	Conducting Solutions	Current
"Times over Plus"	Transition Temperature	Drift velocity	Voltage
Remote Sensing	Semiconductors	John Travolta's rule	Emf and Potential Difference

Physics AS / A2 Revision - "Cue Cards" and "Just a Minute" Unit 1 - other stuff

Moment	Resolution	Equations of Motion	Projectiles
s/t graphs	v/t graphs	Terminal velocity	Oscillators
Damping	Data-logging	Free Fall	Energy resources
Conservation of energy	Stretched spring	Data transmission	Energy losses in cables

Unit 2 - 1 of 2 "Cue Cards" - can you describe/explain each of these points? Check with your answers written on the back.

11.1 Basic Waves (a) Unit 2	11.1 Basic Waves (b) Unit 2
 T and L waves examplesdiagrams polarisation - diagram wave equation - formula (1) reflection, refraction and absordiagrams, with wave fronts phase measuring wave velocity - 3 ways 	
11.2 Diffraction & Interference (a) Unit 2	11.2 Diffraction & Interference (b) Unit 2
 double gap diffraction grating Constructive and Destructive Interference path difference Phase and coherence formulas!! 	 single gap loudspeakers and aerials the eye and resolution diagram & formulas !!

Unit 2 - 2 of 2 "Cue Cards" - can you describe/explain each of these points? Check with your answers written on the back.

11.2 Diffraction & Interference (c) Unit 2

- 2 parallel reflectors
- Inverse square law
- Intensity and amplitude

11.2 Diffraction & Interference (d) Unit 2

- Standing Waves... basics....diagram
-in strings...fundamental and harmonics.... factors affecting the fundamental
-in pipes......open one end... open both ends... fundamental and harmonics
- measuring the speed of sound

11.3 Spectra (a) Unit 2

- Types of spectra
- The EM spectrum the 7 radiations, frequencies, wave lengths and photon energies...rough figures

11.3 Spectra (b)

Unit 2

- Doppler effect (Nee-Nah!)... basics.... formula
- redshift.... example
- Hubble's Law.... formula (1)
- Big Bang

Physics AS / A2 Revision - "Cue Cards" and "Just a Minute" Unit 2 - The Wavy stuff

Path Difference	Inverse Square Law	Polarisation	Reflection and Refraction
Single Gap Diffraction	Double Gap Diffraction	Diffraction Grating	Path Difference
Constructive and Destructive Interference	Parallel Reflectors	EM Spectrum	Standing Waves
Fundamental and Harmonics	Doppler Effect	Red Shift	"Big Bang"

Physics AS / A2 Revision - "Cue Cards" and "Just a Minute" Unit 2 - other non-wavy stuff.

Background Radiation	Anti-neutrino	Ionising radiation	Alpha, Beta and Gamma radiation
Half Life	Decay equation	Nucleon and Proton numbers	Alpha particle scattering
Antiparticles	Leptons	Hadrons	Quarks
Bandwidth	Sampling rate	Modulation	Information transmission

Unit 4 - 1/3. "Cue Cards" - can you describe/explain each of these points? Check with your answers written on the back.

13.2 SHM 13.6 Capacitors (1 of 2) Unit 4 Unit 4 basics...diagram...examples....formulas (4?) basics...diagram....definition of 1 • simple pendulum....mass/spring...formulas (2) Farad.....formula (1) • energy and amplitude physical construction....factors affecting forced capacitance...formula (1) vibrations....resonance,...examples....graph energy stored - formula (3 versions) 13.6 Capacitors (2 of 2) 13.1 Circular Motion Unit 4 Unit 4 combinations - series and parallel...formulas (2) basics...diagram....centripetal acceleration -• discharge.... graphs.....half life.... formulas (2) formulas (2 versions) meaning of slope of Q/t.... area under I/t • angular distance velocity.... links to linear $d=v \times t$ graphs • centripetal force....diagrams

13.4 Kinetic Theory (1 of 2) 13.5 Heating and Working (1 of 2) Unit 4 Unit 4 Brownian motion...internal energy...random • First Law... $\Delta U = Q + W$...heating and working distribution change the internal energy of a gas.... • ideal gas equation... (1 formula)...3 relationships •adiabatic, isothermal, const. Vol. changes - PV, PT, VT...explain with particle model for gases • Q = $mc\Delta\theta$solids and flowing fluids (gases and • Thermodynamic temp. scale...absolute zero liquids)... Q = ml. 13.4 Kinetic Theory (2 of 2) 13.5 Heating and Working (2 of 2) Unit 4 Unit 4 Molar mass and Avogadro constant Work done by moving forces...W = Fs... W = Maxwell's formula....pV= 1/3 Nm< c² > area under F/s graph... P = Fv Gas internal energy... T /K ∞ av kinetic • Work done on/by gas = $p\Delta V$area under pVenergy...energy of 1 molecule is 3kT/2. graph Young modulus... E=stress/strain... stress = F/A... strain= $\Delta I/I....$ graphs for metals and rubber

Unit 4 - 3/3. "Cue Cards" - can you describe/explain each of these points? Check with your answers written on the back. 13.7 Momentum (1 of 2) Unit 4 13.7 Unit 4 Momentum (2 of 2) • impulse....formula (1)...examples...changing definition - formula and units (1) conservation in collisions force...short times • force / time graphs....area elastic and inelastic...examples...energy and momentum...especially nuclear particles 13.8 Quantum Physics Unit 4 13.8 Quantum Physics (b) (a) Unit 4 wave/particle theory... exp. evidence for atomic energy levels and line spectra... (1 particle and wave behaviour from EM waves formula) and electrons • lasers... how they work.... population inversion • de Broglie wavelength.. (1 formula)...probability metastable state ∞ amplitude² • photo-electric effect...photon energy...work function (2 formulas)

Physics AS / A2 Revision - "Cue Cards" and "Just a Minute"
Unit 4 - 1 of 3. "Just a Minute" - can you talk for 1 minute on these topics? Draw diagrams to help you explain.

Work done by a Forceand at an angle to the force direction	Radians, Angular velocity, and linear velocity	Centripetal Acceleration and forces	The 2 Key features of SHM
The 3 graphs of SHM	The simple pendulum and measuring "g"	SHM - acceleration and displacement	SHM - the energiesand link between energy and amplitude.
SHM - mass/spring system and an atom in a crystal	SHM - and damping	Forced oscillations and Resonance	Momentum – and tennis
Momentum – and elastic collisions and atomic nuclei	Momentum - and rockets and explosions	Momentum – and inelastic car crashes and skids	Momentum – and impulseand force/time graphs

Internal kinetic energy	Ideal Gas Equation	Absolute Zero	Avogadro Constant
Zeroth Law	Average energy of a molecule	The First Law	Isothermal changes
Constant Volume changes	Adiabatic changes	Specific and Latent Heat	Work done by an expanding gas
Molar specific heat	Elastic stored energy	Young Modulus	Rate of working

Capacitance	Capacitors in Series and Parallel	Energy stored in a Capacitor	Physical factors in Capacitance
Capacitor discharge	Capacitor discharge graphs	Time constant	Photon energy
Photoelectric effect	Line spectra	Atomic energy levels	lasers
Wave/Particle behaviour	de Broglie waves	Electron Probability	Electron Diffraction

14.2 Magnetic Fields - Motor effect (a) Unit 5	14.2 Magnetic Fields - EM induction (a) Unit 5		
 magnetic flux and flux densityformula (1) force on a wireformula (1) motorcurrent balancediagrams of each 	 Faraday's lawformula + explaining all symbolsand the - sign Emil Lenz's lawexplanation and examples of use simple ac alternator (single coil)diagramhow it worksac output factors affecting peak output and ac frequency 		
14.2 Magnetic Fields - Motor effect (b) Unit 5	14.2 Magnetic Fields - EM induction (b) Unit 5		
 force on a moving chargefromula (1) Flemings LH Rule for wire and charge balanced electric and magnetic forces 	 transformersdiagramexplanation of workingenergy losses (2 + 2) formulas turns ratiopower input / output for 100% efficient use in power transmission voltage drop + energy losses from cables eddy currentsin transformers use in damping oscillations 		

14.4 Particles and detectors (a) Unit 5 1

- electron tube (gun)...accelerating charged particles with electric field....PE --> KE.... equation
- charged particles in "crossed" electric & magnetic fields

14.4 Particles & Detectors-radioactive decay Unit 5

- builds on Unit 2 and Unit 4...relates to capacitors
- activity ∞ no. of nuclei...formula (1)
- formulas for exponential decay & half life
 (2)...graphs
- meaning & units of decay constant λ

14.4 Particles and detectors (b) Unit 5

- particle accelerators...cyclotron...diagram...how it works...... synchrotron...compare with cyclotron ...relativistic increase in mass with speed
- de Broglie wavelengths of particles
- bubble chambers...working out charge and momentum from particle tracks

14.3 Nuclear Energy Unit 5

- E= mc² applies to all energy changes and mass loss
- building big particles by colliding small fast particles
- nuclear binding energy... graph
- basic fission reactors
- 14.1... Strong force...short range... between Quarks and Hadrons... exceeds Grav/Elec fields... holds nucleus together.

Unit 5 - 3 of 3. "Cue Cards" - can you describe/explain each of these points? Check with your answers written on the back.

14.1 Fields - Gravity (a)	Unit 5	14.1 Fields - Electric (a)	Unit 5
 g = F/m N/kg always attraction Forces between point massesbig G gravitational field strength orbital periods and speeds of satellites geosynchronous orbits 		 E= F/Q N/C attract or repel Forces between point chargespermittivity electric field strength - for a point charge electric field strength for a uniform field 	
 14.1 Fields - Gravity (b) Energy conservation PE to KE diagrams force lines and equipor Force-distance graphs and potent calculating PE changes Absolute Potential Universe Open, critical or closed? 	tentials tial energy	 14.1 Fields - Electric (b) Energy conservation VQ diagrams force lines and equilibrate Force-distance graphs and pot calculating PE changes Absolute Potential 	•

Flux density	"Bil and Bev"	Fleming's LH Rule	Michael Faraday's Law
Emil Lenz's Law	"Robots in Disguise"	Eddy Currents	Electron gun
"Crossed fields"	Cyclotron	de Broglie wavelength	Exponential radioactive decay
Radioactive decay constant	Half life and Decay constant	Fission reactors	Nuclear binding energy

Unit 5 2/2.	"Just	a Minute"	- can	you talk for	1 minute on	these to	pics?	Draw diagrams	to help you	explain.

Velocity selector	Cloud and Bubble chambers	strong nuclear force	electron charge/mass ratio
Potential energy in a field	Inverse square law for gravity	"N/kg"	Geosynchronous satellites
Energy conservation in fields	Closed Universe ?	"N/C"	Point charge electric field strength
Uniform Electric field strength	"VQ"	Equipotentials and Field lines	Absolute Potential